Wide-field Fourier ptychographic microscopy using laser illumination source.
نویسندگان
چکیده
Fourier ptychographic (FP) microscopy is a coherent imaging method that can synthesize an image with a higher bandwidth using multiple low-bandwidth images captured at different spatial frequency regions. The method's demand for multiple images drives the need for a brighter illumination scheme and a high-frame-rate camera for a faster acquisition. We report the use of a guided laser beam as an illumination source for an FP microscope. It uses a mirror array and a 2-dimensional scanning Galvo mirror system to provide a sample with plane-wave illuminations at diverse incidence angles. The use of a laser presents speckles in the image capturing process due to reflections between glass surfaces in the system. They appear as slowly varying background fluctuations in the final reconstructed image. We are able to mitigate these artifacts by including a phase image obtained by differential phase contrast (DPC) deconvolution in the FP algorithm. We use a 1-Watt laser configured to provide a collimated beam with 150 mW of power and beam diameter of 1 cm to allow for the total capturing time of 0.96 seconds for 96 raw FPM input images in our system, with the camera sensor's frame rate being the bottleneck for speed. We demonstrate a factor of 4 resolution improvement using a 0.1 NA objective lens over the full camera field-of-view of 2.7 mm by 1.5 mm.
منابع مشابه
2 3 M ar 2 01 6 Wide - field Fourier ptychographic microscopy using laser illumination source
Fourier ptychographic (FP) microscope is a coherent imaging method that can synthesize an image with a higher bandwidth using multiple low-bandwidth images captured at different spatial frequency regions. The method’s demand for multiple images drives the need for a brighter illumination scheme and a high-frame-rate camera for a faster acquisition. We report the use of a guided laser beam as an...
متن کاملSNR-based adaptive acquisition method for fast Fourier ptychographic microscopy
Fourier ptychographic microscopy (FPM) is a computational imaging technique with both high resolution and large field-of-view. However, the effective numerical aperture (NA) achievable with a typical LED panel is ambiguous and usually relies on the repeated tests of different illumination NAs. The imaging quality of each raw image usually depends on the visual assessments, which is subjective a...
متن کاملFourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient
Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, an...
متن کاملA phase space model of Fourier ptychographic microscopy.
A new computational imaging technique, termed Fourier ptychographic microscopy (FPM), uses a sequence of low-resolution images captured under varied illumination to iteratively converge upon a high-resolution complex sample estimate. Here, we propose a mathematical model of FPM that explicitly connects its operation to conventional ptychography, a common procedure applied to electron and X-ray ...
متن کاملDigital pathology with Fourier ptychography
Fourier ptychographic microscopy (FPM) is a recently introduced method of acquiring high-resolution, wide field of view (FOV) giga-pixel histology images. The FPM procedure first acquires a sequence of low-resolution images of a sample under variable-angle illumination. It then combines these images using a novel phase retrieval algorithm to improve the employed microscope's resolution beyond i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biomedical optics express
دوره 7 11 شماره
صفحات -
تاریخ انتشار 2016